Knowledge of University Athletes about Knowing and Monitoring of Vital Signs of Blood Pressure (BP), Heart Rate (HR) and Body Mass Index (BMI) as Preventive Strategy in Reducing Early and Unsuccessful Ageing Cased at Njala Campus

Bebeley Samuel Joseph, Laggao Sam Augustine and Tucker Henry Joe

Abstract

Aim: To assess the preventive strategy in reducing early and unsuccessful ageing among University Athletes using Njala Campus as a case study, with the significance to measure and evaluate the knowledge of University Athlete about knowing and monitoring of vital signs of blood pressure [BP], heart rate [HR] and body mass index [BMI] as preventive strategy in reducing early and unsuccessful ageing. **Method:** The modified health risk behaviour survey questionnaire [MHRBSQ] was adopted for testing the parameters. The respondents interviewed were mainly undergraduate athletes with an aggregate of one hundred and fifty \(n=150 \). However, 55 with 37% were female and 95 with 63% were male, selected using the systematic random sampling. Also sampled were four Schools: 25 with 16.6% female and 40 with 26.6% male from the School of Agriculture & Environmental Science; 30 with 20% female and 55 with 37% male from the School of Education & Technology, from level [100-200] and from level [300-400], within the age range of [18-30 year]. **Results:** Analysis of findings from knowing and monitoring of vital signs of blood pressure [BP], heart rate [HR] and body mass index [BMI], show a holistic significant difference in all three variables \(t \)-values of 4.666, 4.711 and 3.368 \(p<0.05 \). **Conclusion:** Conclusively therefore, the findings show that majority of the University Athletes were experienced holistically in their knowledge about preventive strategy in reducing early and unsuccessful ageing with respect to the evaluated variables. It was recommended that University Athletes be given thoroughly supervised seminars, workshops and screening prior to any intercollegiate competitions held, with special reference to knowledge of vital signs.

Bebeley Samuel Joseph
Lecturer
Department of Human Kinetics and Health Education
Njala University, Sierra Leone
E-mail: bsaj2004@hotmail.co.uk

Laggao Sam Augustine
HOD Human Kinetics and Health Education
Njala University, Sierra Leone

Tucker Henry Joe
Lecturer
Department of Human Kinetics and Health Education
Njala University, Sierra Leone

Key Words: Ageing, Athlete, Blood Pressure, Body Mass Index, Health, Physical Fitness

DOI: 10.18376/jesp/2017/v13/i1/111270

Introduction

Vital signs [shortened as vitals] are used to measure the body’s basic functions. These measurements are taken to help assess the general physical health of a person, give clues to possible diseases, and show progress toward recovery. The normal ranges for a person’s vital signs vary with age, weight, gender, and overall health, *National Early Warning Score Development and...*
Implementation Group (2012). There are four primary vital signs: body temperature, blood pressure, pulse (heart rate), and breathing rate (respiratory rate), often notated as BT, BP, HR, and RR. However, depending on the clinical setting, the vital signs may include other measurements called fifth or sixth vital sign such as the body mass index shortened as BMI. Vital signs are recorded using the LOINC internationally accepted standard coding system, National Institute for Health and Clinical Excellence (2007). Early warning scores have been proposed that combine the individual values of vital signs into a single score. This was done in recognition that deteriorating vital signs often precede cardiac arrest and/or admission to the intensive care unit. Used appropriately, a rapid response team can assess and treat a deteriorating patient and prevent adverse outcomes, Acute Care Toolkit (2013).

Wellness is generally used to mean a healthy balance of the mind, body and spirit that results in an overall feeling of well-being. It has been used in the context of alternative medicine since Halbert, L. Dunn, M.D., began using the phrase high-level wellness in the 1950s. The modern concept of wellness did not, however, become popular until the 1970s, Zimmer, B. (2010). Halbert, L. and Dunn, M. D., began using the phrase high-level wellness in the 1950s, based on a series of lectures at a Unitarian Universalist Church in Arlington, Virginia, in the United States. Dunn (196, p. 4) defined wellness as "an integrated method of functioning which is oriented toward maximizing the potential of which the individual is capable. It requires that the individual maintain a continuum of balance and purposeful direction within the environment where he is functioning." He also stated that, "wellness is a direction in progress toward an ever-higher potential of functioning" (p. 6).

Dunn also described wellness as health being, "much more than the absence of disease remains a cornerstone concept of wellness today." (Dunn, 787, p 7) Dunn saw wellness as hierarchical: there were lower levels of wellness and higher ones, and the aim was to move everyone up from where they started to high-level wellness (Dunn, 789, p 8), Neilson, E. A. (1988).

Health is that balanced condition of the living organism in which the integral, harmonious performance of the vital functions tends to the preservation of the organism and the normal development of the individual, World Health Organization (2011). Physical fitness is a measure of the individual body's ability and capability to function efficiently and effectively during work and leisure times, with the tendency of resisting hypokinetic diseases, and to meet unforeseen situations, Colfer, G. R. (2004).

Blood pressure (BP) is the pressure exerted by circulating blood upon the walls of blood vessels. When used without further specification, "blood pressure" usually refers to the arterial pressure in the systemic circulation. It is usually measured at a person's upper arm. Blood pressure is usually expressed in terms of the systolic (maximum) pressure over diastolic (minimum) pressure and is measured in millimeters of mercury (mmHg). It is one of the vital signs along with respiratory rate, heart rate, oxygen saturation and body temperature. Normal resting blood pressure in an adult is approximately 120/80 mmHg, American Heart Association (2011). Blood pressure varies depending on situation, activity, and disease states. It is regulated by the nervous and endocrine systems. Blood pressure that is low due to a disease state is called hypotension, and pressure that is consistently high is hypertension. Both have many causes, which can range from mild to severe. Both may be of sudden onset or of long duration. Long-term hypertension is a risk factor for many diseases, including kidney failure, heart disease and stroke. Long-term hypertension is more common than long-term hypotension in Western countries. Long-term hypertension often goes undetected because of infrequent monitoring and the absence of symptoms, Mayo Clinic staff (2009). In the UK, clinic blood pressures are usually categorized into three groups; low (90/60 or lower), normal (between 90/60 and 139/80), and high (140/90 or higher), National Heart Lung and Blood Institute (2008). Systolic and diastolic arterial blood pressures are not static but undergo
natural variations from one heartbeat to another and throughout the day (in a circadian rhythm). They also change in response to stress, nutritional factors, drugs, disease, exercise, and momentarily from standing up. Sometimes the variations are large. Hypertension refers to arterial pressure being abnormally high, as opposed to hypotension, when it is abnormally low. Along with body temperature, respiratory rate, and pulse rate, blood pressure is one of the four main vital signs routinely monitored by medical professionals and healthcare providers, Deakin, C. D. et al. (2000). Heart rate (HR), or heart pulse, is the speed of the heartbeat measured by the number of poundings of the heart per unit of time - typically beats per minute (bpm). The heart rate can vary according to the body's physical needs, including the need to absorb oxygen and excrete carbon dioxide. Activities that can provoke change include physical exercise, sleep, anxiety, stress, illness, ingesting, and drugs. The normal resting adult human heart rate ranges from 60–100 (bpm), "Target Heart Rates - AHA" (2014). Tachycardia is a fast heart rate, defined as above 100 (bpm) at rest, "Tachycardia Fast Heart Rate" (2013). Bradycardia is a slow heart rate, defined as below 60 (bpm) at rest. During sleep a slow heartbeat with rates around 40–50 (bpm) is common and is considered normal. When the heart is not beating in a regular pattern, this is referred to as an arrhythmia. These abnormalities of heart rate sometimes indicate disease, "Tachycardia Fast Heart Rate" (2013). While heart rhythm is regulated entirely by the Sino atrial node under normal conditions, heart rate is regulated by sympathetic and parasympathetic input to the Sino atrial node. The accelerants nerve provides sympathetic input to the heart by releasing norepinephrine onto the cells of the Sino atrial node, and the vagus nerve provides parasympathetic input to the heart by releasing acetylcholine onto Sino atrial node (SAN) cells. Therefore, stimulation of the accelerants nerve increases heart rate, while stimulation of the vagus nerve decreases it, Schmidt-Nielsen and Knut (1997). Due to individuals having a constant blood volume, one of the physiological ways to deliver more oxygen to an organ is to increase heart rate to permit blood to pass by the organ more often, "Tachycardia Fast Heart Rate" (2013). Normal resting heart rates range from 60–100 (bpm). Bradycardia is defined as a resting heart rate below 60 (bpm). However, heart rate(s) from 50 to 60 (bpm) are common among healthy people and do not necessarily require special attention. Tachycardia is defined as a resting heart rate above 100 (bpm), though persistent rest rates between 80–100 (bpm), mainly if they are present during sleep, may be signs of hyperthyroidism or anemia, "Tachycardia Fast Heart Rate" (2013). Normal resting heart rates range from 60–100 (bpm). However, heart rate(s) from 50 to 60 (bpm) are common among healthy people and do not necessarily require special attention. Tachycardia is defined as a resting heart rate above 100 (bpm), though persistent rest rates between 80–100 (bpm), mainly if they are present during sleep, may be signs of hyperthyroidism or anemia, "Tachycardia Fast Heart Rate" (2013). There are many ways in which the heart rate speeds up or slows down. Most involve stimulant-like endorphins and hormones being released in the brain, many of which are 'forced'/enticed' out by the ingestion and processing of drugs, Anderson, J. M. (1991).

Body mass index (BMI), or Quetelet index, is a value derived from the mass (weight) and height of an individual. The BMI is defined as the body mass divided by the square of the body height, and is universally expressed in units of kg/m², resulting from weight in kilograms and height in meters, World Health Organization BMI Classification (2006) or chart which displays BMI as a function of mass and height using contour lines or colors for different BMI categories, and may use two different units of measurement, Eknoyan and Garabed (2007). The BMI is an attempt to quantify the amount of tissue mass (muscle, fat, and bone) in an individual, and then categorize that person as underweight, normal weight, overweight, or obese based on that value. However, there is some debate about where on the BMI scale the dividing lines between categories should be placed. Commonly accepted BMI ranges are underweight: 18.5, normal weight: 18.5 to 25, overweight: 25 to 30, obese: over 30 (kg/m²), Malcolm, K., Dr. (2015). There are criticisms of using the BMI to define obesity in individuals. One is that the BMI was designed for population studies, not individuals. Another is that body fat percentage (BFP) is a more reliable indicator of obesity than BMI: very muscular, lean (low body fat) individuals can be classified as obese using BMI, but are
classified as having a normal weight using BFP. An even simpler alternative to the BMI is to define obese individuals as those whose waist circumference is greater than 50% of their height, indicating excess intra-abdominal fat, Jeremy Singer-Vine (2009). The index was devised by Adolphe Quetelet (1830-1850) during which time he developed what he called "social physics", Eknoyan and Garabed (2007). The modern term "body mass index" (BMI) for the ratio of weight to squared height owes its popularity to a paper published in the July 1972 edition of the *Journal of Chronic Diseases* by Ancel Keys. This found the BMI to be the best proxy for body fat percentage among ratios of weight and height, Keys, A. *et al.* (1972). The interest in an index that measures body fat came with increasing obesity in prosperous Western societies. Keys explicitly cited BMI as appropriate for population studies and inappropriate for individual evaluation. Nevertheless, due to its simplicity, it has come to be widely used for preliminary diagnosis, *National Heart, Lung and Blood Institute* (2014).

Collegiate athletes by definition are athletes that are engaged in organized games and sports competition sponsored by individual educational institutions. Gerdy, R. (2000). Collegiate athletes that give positive reason to the contraindications posed by behavioral risk factors, Muffuli, *et al.* (2003) that progresses unsuccessful ageing is referred to as primary prevention knowledge. However, successful ageing refers to physical, mental and social well-being in older age. The concept of successful aging can be traced back to the 1950s, and was popularized in the 1980s. It reflects changing view on aging in Western countries, where a stigma associated with old age (see ageism) has led to considering older people as a burden on society. Consequently, in the past most of the scientists have been focusing on negative aspects of aging or preventing the decline of youth, Rowe, J. *et al.* (1997) and Fries, J. F. (2002). Research on successful aging, however, acknowledges the fact that there is a growing number of older adults functioning at a high level and contributing to the society. Scientists working in this area seek to define what differentiates successful from usual aging in order to design effective strategies and medical interventions to protect health and well-being from aging, Rowe, J. *et al.* (1997); Cantoni, G. (1998); WHO (2003); Peel, N. M. *et al.* (2005); Phelan, E. A. (2002) and Lupien, S. J. (2004). Researchers in ageing studies are critical of the very term 'successful ageing' as it implies failure on the part of those who do not meet arbitrary criteria derived from neoliberal and/or biomedical definitions, Katz, S. (2015).

This study only looked at the assessment of University Athletes knowledge about the knowing and monitoring of vital signs of blood pressure [BP], heart rate [HR] and body mass index [BMI], as preventive strategy in reducing early and unsuccessful ageing, ranked through 100-to-200 and 300-to-400 levels, thereby pointing outcomparatively the significant differences between the dependent variables regarding blood pressure [BP], heart rate [HR] and body mass index [BMI] cased at Njala Campus.

Materials and Methods

Respondents interviewed were mainly undergraduates’ athletes with an aggregate of one hundred and fifty [n=150]. However, 55 with 37% were female and 95 with 63% were male; 30 with 20% female Christians and 40 with 27% male Christians; 25 with 16.6% female Muslims and 55 with 36.6% male Muslims; 4 with 3% married female and 6 with 4% married male; 51 with 34% female single and 89 with 59% male single; 35 with 23.3% South-East female and 65 with 43.3% South-East male; 20 with 13% North-West female and 30 with 20% North-West male, were selected using the systematic random sampling. Also sampled were four Schools: 25 with 16.6% female and 40 with 26.6% male from the School of Agriculture & Environmental Science; 30 with 20% female and 55 with 37% male from the School of Education & Technology; 45 with 30% female and 80 with 53% male from level [100-200]; 10 with 7% female and 15 with 10% male from level [300-
400]; 30 with 20% female and 60 with 40% male were within the age range of [18-25]; 25 with 17% female and 35 with 23% male were within the age range of [26-30+] in years.

Instrument for Measuring Parameters

The descriptive survey research design was used for the research. The dependent variables tested were: knowing and monitoring of vital signs of blood pressure [BP], heart rate [HR] and body mass index [BMI]. The modified health risk behavioural survey questionnaire [MHRBSQ] was adopted as the research instrument for testing the parameters that was formally worked on by Bebeley, S. J. (2016). The questionnaire was supported with Section-One demographic data and Section-Two variable data. Senior colleagues in the Department of Human Kinetics and Health Education, Njala University and College of Physical Education and Sport Training, Shanghai University of Sport, validated the questionnaire as research instrument which was pre-tested on an aggregate of 50 Polytech Athletes from Kenema using the test retest method, thereby producing a high reliability of 0.99 as referenced in tables 1-2 below.

Test Procedures

Respondents interviewed were mainly undergraduate University Athletes with an aggregate of one hundred and fifty [n=150] ranked through 100-to-200 and 300-to-400 levels and Schooledthrough Agriculture-to-Environmental Science and Education-to-Technology, Njala Campus. The respondents were interviewed by the researchers helped by some academic staff members of the Department of Human Kinetics and Health Education adopting the face-to-face logic based on the dependent variables, before the Campus Sport Complex prior to training session adhering strictly to the dependent variables in their response. The individual responses were compiled for statistical analyses.

Statistical Analysis

The standard deviation, mean, inferential statistics of Dependent t-test [t], percentage and frequency distribution tables, were adopted for analyzing the data obtained from University Athletes using Njala Campus as case study about their knowledge of preventive strategy in decreasing early ageing through a modified health risk behavioural survey questionnaire [MHRBSQ] as research instrument for testing the variables, which was formally used by Bebeley, et al. (2016), objected towards plausible differences on the views of University Athletes knowledge about preventive strategy in reducing early and unsuccessful ageing. The results were evaluated at level of significance p<0.05.

Results

Table 1. Reliability Test-retest Demographic Data of Respondents according to Gender [n=50]

<table>
<thead>
<tr>
<th>Gender</th>
<th>Age</th>
<th>P²</th>
<th>Q²</th>
<th>Ti</th>
<th>Ti²</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[18-25]</td>
<td>[26-35+]</td>
<td>R₁</td>
<td>R₂</td>
<td>R₁</td>
</tr>
<tr>
<td>Male</td>
<td>25</td>
<td>24</td>
<td>10</td>
<td>11</td>
<td>625</td>
</tr>
<tr>
<td>Female</td>
<td>10</td>
<td>09</td>
<td>05</td>
<td>06</td>
<td>100</td>
</tr>
<tr>
<td>[n=2]</td>
<td>*ΣP = 68</td>
<td>*ΣQ = 32</td>
<td>*ΣP² = 1382</td>
<td>*ΣQ² = 282</td>
<td>*Σ Ti² = 2762</td>
</tr>
</tbody>
</table>

*Reliability = 0.99
| Gender | Marital Status | P² | Q² | Ti | Ti² | P | Q | R₁ | R₂ | R₁ | R₂ | R₁ | R₂ | P | Q | R₁ | R₂ | R₁ | R₂ |
|--------|----------------|----|----|----|-----|----|----|-----|----|-----|----|-----|----|----|---|----|-----|----|-----|----|
| Male | Single | 30 | 29 | 08 | 09 | 900| 841| 64 | 81 | 59 | 17 | 3481| 289| | | | | |
| Female | Single | 10 | 09 | 02 | 03 | 100| 81 | 04 | 09 | 19 | 05 | 361 | 25 | | | | | |
| | Married | 38 | 24 | 25 | 09 | 676| 625| 100 | 81 | 51 | 19 | 2601| 361| | | | | |
| | Married | 26 | 10 | 09 | 05 | 100| 121| 16 | 25 | 21 | 07 | 441 | 49 | | | | | |

\[\sum P = 78 \quad \sum Q = 22 \quad \sum P² = 1922 \quad \sum Q² = 158 \quad \sum Ti² = 3842 \quad 314\]

\[\frac{\sum P²}{\sum Q²} = 6084 \quad \frac{\sum Q²}{\sum P²} = 484 \quad \text{Reliability} = 0.99\]

<table>
<thead>
<tr>
<th>Gender</th>
<th>Religion Category</th>
<th>P²</th>
<th>Q²</th>
<th>Ti</th>
<th>Ti²</th>
<th>P</th>
<th>Q</th>
<th>R₁</th>
<th>R₂</th>
<th>R₁</th>
<th>R₂</th>
<th>R₁</th>
<th>R₂</th>
<th>P</th>
<th>Q</th>
<th>R₁</th>
<th>R₂</th>
<th>R₁</th>
<th>R₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>Muslim</td>
<td>26</td>
<td>25</td>
<td>10</td>
<td>09</td>
<td>676</td>
<td>625</td>
<td>100</td>
<td>81</td>
<td>51</td>
<td>19</td>
<td>2601</td>
<td>361</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>Muslim</td>
<td>10</td>
<td>11</td>
<td>05</td>
<td>04</td>
<td>100</td>
<td>121</td>
<td>16</td>
<td>25</td>
<td>21</td>
<td>07</td>
<td>441</td>
<td>49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Christian</td>
<td>64</td>
<td>30</td>
<td>02</td>
<td>03</td>
<td>100</td>
<td>81</td>
<td>04</td>
<td>09</td>
<td>19</td>
<td>05</td>
<td>361</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Christian</td>
<td>26</td>
<td>10</td>
<td>09</td>
<td>05</td>
<td>100</td>
<td>121</td>
<td>16</td>
<td>25</td>
<td>21</td>
<td>07</td>
<td>441</td>
<td>49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[\sum P = 72 \quad \sum Q = 26 \quad \sum P² = 1522 \quad \sum Q² = 222 \quad \sum Ti² = 3042 \quad 410\]

\[\frac{\sum P²}{\sum Q²} = 5184 \quad \frac{\sum Q²}{\sum P²} = 676 \quad \text{Reliability} = 0.99\]

<table>
<thead>
<tr>
<th>Gender</th>
<th>Region Allocation</th>
<th>P²</th>
<th>Q²</th>
<th>Ti</th>
<th>Ti²</th>
<th>P</th>
<th>Q</th>
<th>R₁</th>
<th>R₂</th>
<th>R₁</th>
<th>R₂</th>
<th>R₁</th>
<th>R₂</th>
<th>P</th>
<th>Q</th>
<th>R₁</th>
<th>R₂</th>
<th>R₁</th>
<th>R₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>South/East</td>
<td>22</td>
<td>23</td>
<td>15</td>
<td>14</td>
<td>484</td>
<td>529</td>
<td>225</td>
<td>196</td>
<td>45</td>
<td>29</td>
<td>2025</td>
<td>81</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>South/East</td>
<td>08</td>
<td>09</td>
<td>05</td>
<td>04</td>
<td>64</td>
<td>81</td>
<td>25</td>
<td>16</td>
<td>17</td>
<td>09</td>
<td>289</td>
<td>81</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>North/West</td>
<td>26</td>
<td>24</td>
<td>12</td>
<td>11</td>
<td>576</td>
<td>625</td>
<td>144</td>
<td>121</td>
<td>49</td>
<td>23</td>
<td>2401</td>
<td>529</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>North/West</td>
<td>10</td>
<td>07</td>
<td>08</td>
<td>07</td>
<td>36</td>
<td>49</td>
<td>64</td>
<td>49</td>
<td>13</td>
<td>15</td>
<td>169</td>
<td>225</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[\sum P = 62 \quad \sum Q = 38 \quad \sum P² = 1158 \quad \sum Q² = 462 \quad \sum Ti² = 2314 \quad 922\]

\[\frac{\sum P²}{\sum Q²} = 3844 \quad \frac{\sum Q²}{\sum P²} = 1444 \quad \text{Reliability} = 0.99\]

<table>
<thead>
<tr>
<th>Gender</th>
<th>School of Studies</th>
<th>P²</th>
<th>Q²</th>
<th>Ti</th>
<th>Ti²</th>
<th>P</th>
<th>Q</th>
<th>R₁</th>
<th>R₂</th>
<th>R₁</th>
<th>R₂</th>
<th>R₁</th>
<th>R₂</th>
<th>P</th>
<th>Q</th>
<th>R₁</th>
<th>R₂</th>
<th>R₁</th>
<th>R₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>Edu/Tech</td>
<td>24</td>
<td>25</td>
<td>12</td>
<td>11</td>
<td>576</td>
<td>625</td>
<td>144</td>
<td>121</td>
<td>49</td>
<td>23</td>
<td>2401</td>
<td>529</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>Edu/Tech</td>
<td>06</td>
<td>07</td>
<td>08</td>
<td>07</td>
<td>36</td>
<td>49</td>
<td>64</td>
<td>49</td>
<td>13</td>
<td>15</td>
<td>169</td>
<td>225</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ag./Env Sc.</td>
<td>38</td>
<td>28</td>
<td>12</td>
<td>11</td>
<td>576</td>
<td>625</td>
<td>144</td>
<td>121</td>
<td>49</td>
<td>23</td>
<td>2401</td>
<td>529</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ag./Env Sc.</td>
<td>10</td>
<td>07</td>
<td>08</td>
<td>07</td>
<td>36</td>
<td>49</td>
<td>64</td>
<td>49</td>
<td>13</td>
<td>15</td>
<td>169</td>
<td>225</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[\sum P = 62 \quad \sum Q = 38 \quad \sum P² = 1286 \quad \sum Q² = 378 \quad \sum Ti² = 2570 \quad 754\]

\[\frac{\sum P²}{\sum Q²} = 3844 \quad \frac{\sum Q²}{\sum P²} = 1444 \quad \text{Reliability} = 0.99\]

<table>
<thead>
<tr>
<th>Gender</th>
<th>Level of Academe</th>
<th>P²</th>
<th>Q²</th>
<th>Ti</th>
<th>Ti²</th>
<th>P</th>
<th>Q</th>
<th>R₁</th>
<th>R₂</th>
<th>R₁</th>
<th>R₂</th>
<th>R₁</th>
<th>R₂</th>
<th>P</th>
<th>Q</th>
<th>R₁</th>
<th>R₂</th>
<th>R₁</th>
<th>R₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>Lv1-Lv2</td>
<td>28</td>
<td>29</td>
<td>10</td>
<td>09</td>
<td>784</td>
<td>841</td>
<td>100</td>
<td>81</td>
<td>57</td>
<td>19</td>
<td>3249</td>
<td>361</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>Lv1-Lv2</td>
<td>10</td>
<td>11</td>
<td>02</td>
<td>01</td>
<td>100</td>
<td>121</td>
<td>04</td>
<td>01</td>
<td>21</td>
<td>03</td>
<td>441</td>
<td>09</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lv3-Lv4</td>
<td>28</td>
<td>29</td>
<td>10</td>
<td>09</td>
<td>784</td>
<td>841</td>
<td>100</td>
<td>81</td>
<td>57</td>
<td>19</td>
<td>3249</td>
<td>361</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lv3-Lv4</td>
<td>10</td>
<td>11</td>
<td>02</td>
<td>01</td>
<td>100</td>
<td>121</td>
<td>04</td>
<td>01</td>
<td>21</td>
<td>03</td>
<td>441</td>
<td>09</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Reliability Test-retest of Polytechnic Athletes’ knowledge about knowing & monitoring of vital signs as primary preventive strategy in reducing early and unsuccessful ageing [n=50]

<table>
<thead>
<tr>
<th>Variable</th>
<th>Blood Pressure</th>
<th>Heart Rate</th>
<th>*∑P = 78</th>
<th>*∑Q = 22</th>
<th>*∑P² = 1846</th>
<th>*∑Q² = 186</th>
<th>*∑Ti² = 3690</th>
<th>370</th>
</tr>
</thead>
<tbody>
<tr>
<td>[n=2]</td>
<td></td>
<td></td>
<td>*∑P² = 1846</td>
<td>*∑Q² = 186</td>
<td>*∑Ti² = 3690</td>
<td>370</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*[∑P]² = 6084</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*[∑Q]² = 484</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*Reliability = 0.99</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>Blood Pressure</th>
<th>Heart Rate</th>
<th>P²</th>
<th>Q²</th>
<th>Ti</th>
<th>Ti²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable</td>
<td>Blood Pressure</td>
<td>Heart Rate</td>
<td>R₁</td>
<td>R₂</td>
<td>R₁</td>
<td>R₂</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blood Pressure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Yes]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[No]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R₁</td>
<td>1</td>
<td>41</td>
<td>09</td>
<td>10</td>
<td>1681</td>
<td>1600</td>
</tr>
<tr>
<td>R₂</td>
<td>2</td>
<td>38</td>
<td>12</td>
<td>13</td>
<td>1444</td>
<td>1369</td>
</tr>
<tr>
<td>R₁</td>
<td>4</td>
<td>34</td>
<td>16</td>
<td>17</td>
<td>1156</td>
<td>1089</td>
</tr>
<tr>
<td>R₂</td>
<td>3</td>
<td>34</td>
<td>06</td>
<td>07</td>
<td>1936</td>
<td>1849</td>
</tr>
<tr>
<td>R₁</td>
<td>4</td>
<td>44</td>
<td>12</td>
<td>13</td>
<td>1424</td>
<td>1369</td>
</tr>
<tr>
<td>R₂</td>
<td>5</td>
<td>48</td>
<td>07</td>
<td>08</td>
<td>1524</td>
<td>1444</td>
</tr>
<tr>
<td>R₁</td>
<td>6</td>
<td>32</td>
<td>18</td>
<td>19</td>
<td>1024</td>
<td>961</td>
</tr>
<tr>
<td>R₂</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Heart Rate</th>
<th>P²</th>
<th>Q²</th>
<th>Ti</th>
<th>Ti²</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Yes]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[No]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R₁</td>
<td>1</td>
<td>39</td>
<td>38</td>
<td>11</td>
</tr>
<tr>
<td>R₂</td>
<td>2</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Heart Rate</th>
<th>P²</th>
<th>Q²</th>
<th>Ti</th>
<th>Ti²</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Yes]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[No]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R₁</td>
<td>1</td>
<td>39</td>
<td>38</td>
<td>11</td>
</tr>
<tr>
<td>R₂</td>
<td>2</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Variable</td>
<td>Body Mass Index</td>
<td>P^2</td>
<td>Q^2</td>
<td>T_i</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>R_1</td>
<td>R_2</td>
<td>R_1</td>
</tr>
<tr>
<td></td>
<td>$[\text{Yes}]$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>36</td>
<td>35</td>
<td>14</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>42</td>
<td>41</td>
<td>08</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>48</td>
<td>47</td>
<td>02</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>40</td>
<td>39</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>33</td>
<td>32</td>
<td>17</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>38</td>
<td>37</td>
<td>12</td>
</tr>
</tbody>
</table>

[n=6] $\sum P = 466$ $\sum Q = 134$ $\sum P^2 = 18266$ $\sum Q^2 = 1666$ $\sum T_i^2 = \frac{36526}{3326}$

$\frac{(\sum P)^2}{17956} = \frac{\sum Q^2}{17956} = 0.99$

*Reliability = 0.99
Table 3. Knowledge about knowing and monitoring of vital sign of Blood Pressure [n=150]

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Do you know that Blood Pressure [BP] as one of the vital signs can be linked to the development of low arterial pressure causing eating disorders, particularly anorexia nervosa and bulimia nervosa?</td>
<td>98</td>
<td>65.3</td>
<td>-5.5</td>
<td>30.25</td>
<td>52</td>
<td>34.7</td>
<td>5.5</td>
<td>30.25</td>
</tr>
<tr>
<td>2</td>
<td>Do you know that Blood Pressure [BP] as one of the vital signs can be linked to the development of low arterial pressure, especially low pulse pressure, causing a sign of shock and contributes to and reflects decreased perfusion?</td>
<td>110</td>
<td>73.3</td>
<td>6.5</td>
<td>42.25</td>
<td>40</td>
<td>26.7</td>
<td>-6.5</td>
<td>42.25</td>
</tr>
<tr>
<td>3</td>
<td>Do you know that Blood Pressure [BP] as one of the vital signs can be linked to the development of too low pressure causing hypotension, with a medical concern if it causes signs or symptoms, such as dizziness, fainting, or in extreme cases, shock?</td>
<td>100</td>
<td>66.7</td>
<td>-3.5</td>
<td>12.25</td>
<td>50</td>
<td>33.3</td>
<td>3.5</td>
<td>12.25</td>
</tr>
<tr>
<td>4</td>
<td>Do you believe that Blood Pressure [BP] as one of the vital signs can be linked to high pressure causing hypertension, which can speed up ageing process amongst athletes if not known and monitored?</td>
<td>125</td>
<td>83.3</td>
<td>21.5</td>
<td>462.25</td>
<td>25</td>
<td>16.7</td>
<td>-21.5</td>
<td>462.25</td>
</tr>
</tbody>
</table>
5 Do you know that the loss of the normal fall in Blood Pressure [BP] as one of the vital signs at night is associated with a greater future risk of cardiovascular disease?

6 Do you know that in the elderly, loss of the normal fall in Blood Pressure [BP] as one of the vital signs tends to be above the normal adult range, largely because of reduced flexibility of the arteries?

\[\begin{align*}
\text{P/Yes} & : \text{Mean Score} = 103.5 \text{ and SD Score } = 13.7 \\
\text{Q/No} & : \text{Mean Score} = 46.5 \text{ and SD Score } = 13.7
\end{align*} \]

\[\begin{align*}
\sum P = 621 & \quad \sum [x - \bar{x}]^2 = 1119.5 \\
\sum Q = 279 & \quad \sum [y - \bar{y}]^2 = 1119.5
\end{align*} \]

Figure 1. Knowledge about knowing and monitoring of vital sign of Blood Pressure [n=150]
Table 4. Dependent t-test (t) analysis about knowing and monitoring of vital sign of Blood Pressure [n=150]

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>98</td>
<td>52</td>
<td>46</td>
<td>2116</td>
</tr>
<tr>
<td>2</td>
<td>110</td>
<td>40</td>
<td>70</td>
<td>4900</td>
</tr>
<tr>
<td>3</td>
<td>100</td>
<td>50</td>
<td>50</td>
<td>2500</td>
</tr>
<tr>
<td>4</td>
<td>125</td>
<td>25</td>
<td>100</td>
<td>10000</td>
</tr>
<tr>
<td>5</td>
<td>80</td>
<td>70</td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td>6</td>
<td>108</td>
<td>42</td>
<td>66</td>
<td>4356</td>
</tr>
</tbody>
</table>

* [n=6]
* [ΣD]² = 116964
* df = 5
* ΣD = 342
* ΣD² = 23972
* t = 4.666
* c = 2.571

Table 5. Knowledge about knowing and monitoring vital sign of Heart Rate [n=150]

<table>
<thead>
<tr>
<th>V. Variable-Two: Heart Rate</th>
<th>P [%]</th>
<th>%</th>
<th>[X-Y]</th>
<th>[X-Y]²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>86</td>
<td>57.3</td>
<td>22</td>
<td>484</td>
</tr>
<tr>
<td>2</td>
<td>118</td>
<td>78.7</td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>120</td>
<td>88</td>
<td>12</td>
<td>144</td>
</tr>
</tbody>
</table>

Do you know that Arrhythmias are abnormalities of the heart rate [HR] sometimes felt as palpitations, which produce more serious symptoms of lightheadedness, dizziness and fainting?

Has it occurred to you that knowing and monitoring your heart rate [HR] as one of the vital signs can minimize the speed of ageing process amongst athletes?

Are you aware that athletes prone to the attack of heart rate [HR] as one of the vital signs suffer from chest pain or chest discomforts?
4. Do you believe that athletes prone to the attack of heart rate [HR] as one of the vital signs can speed up their ageing process?

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>130</td>
<td>86</td>
<td>7</td>
<td>22</td>
<td>44</td>
<td>20</td>
<td>13</td>
<td>3</td>
<td>22</td>
</tr>
</tbody>
</table>

5. Do you know that athletes prone to the attack of heart rate [HR] as one of the vital signs are at risk of pain in the arm[s], back, neck, or jaw?

| | | | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|
| | 94 | 62 | 7 | 14 | 66 | 56 | 37 | 3 | 14 |

6. Do you know that athletes prone to the attack of heart rate [HR] as one of the vital signs are also at risk of shortness of breath, fatigue, stomach pain, nausea or lightheadedness, and sweating?

| | | | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|
| | 100 | 69 | 7 | 8 | 64 | 50 | 33 | 8 | 64 |

\[
\begin{align*}
P/Yes & \text{ Mean Score } = 108 \\
& \text{ SD Score } = 15.7 \\
Q/No & \text{ Mean Score } = 42 \\
& \text{ SD Score } = 15.7
\end{align*}
\]

\[
\frac{\sum P}{n} \text{ = } \frac{648}{60} = 10.8 \text{ and } \frac{\sum Q}{n} \text{ = } 252 \text{ and } \frac{\sum (x-\bar{x})^2}{n} = 1472
\]

\[
\frac{\sum P}{n} \text{ = } \frac{648}{60} = 10.8 \text{ and } \frac{\sum Q}{n} \text{ = } 252 \text{ and } \frac{\sum (x-\bar{x})^2}{n} = 1472
\]

Figure 2. Knowledge about knowing and monitoring vital sign of Heart Rate [n=150]
Table 6. Dependent t-test [t] analysis of about knowing and monitoring vital sign of Heart Rate [n=150]

<table>
<thead>
<tr>
<th>Variable</th>
<th>Heart Rate</th>
<th>D</th>
<th>P</th>
<th>Q</th>
<th>[P-Q]</th>
<th>D²</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[Yes]</td>
<td>[No]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>86</td>
<td>64</td>
<td>22</td>
<td>484</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>118</td>
<td>32</td>
<td>86</td>
<td>7396</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>120</td>
<td>30</td>
<td>90</td>
<td>8100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>130</td>
<td>20</td>
<td>110</td>
<td>12100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>94</td>
<td>56</td>
<td>38</td>
<td>1444</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>100</td>
<td>50</td>
<td>50</td>
<td>2500</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* [n=6] * [ΣD]² = 156816 * df = 5 * ΣD = 396 * ΣD² = 32024 * t = 4.711 * c = 2.571

Table 7. Knowledge about knowing and monitoring vital sign of Body Mass Index [n=150]

<table>
<thead>
<tr>
<th>V.</th>
<th>Variable-Three: Body Mass Index</th>
<th>Yes</th>
<th>%</th>
<th>[X²]</th>
<th>No</th>
<th>%</th>
<th>[X²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Do you know that overweight and obese athletes or individuals under the vital sign of body mass index [BMI] are at an increased risk of hypertension?</td>
<td>105</td>
<td>70</td>
<td>1.8</td>
<td>324</td>
<td>45</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>Do you believe that overweight and obesity under the vital sign of body mass index [BMI] can speed up ageing process amongst athletes?</td>
<td>135</td>
<td>90</td>
<td>31.8</td>
<td>1031.24</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>Are you aware that athletes prone to overweight and obesity under the vital sign of body mass index [BMI] suffer from diseases like coronary heart disease?</td>
<td>92</td>
<td>61.3</td>
<td>-11.2</td>
<td>125.44</td>
<td>58</td>
<td>38.7</td>
</tr>
<tr>
<td>4</td>
<td>Knowing and monitoring of vital signs like body mass index [BMI]; can this minimize the speed of ageing process amongst athletes?</td>
<td>118</td>
<td>78.7</td>
<td>14.8</td>
<td>219.04</td>
<td>32</td>
<td>21.3</td>
</tr>
<tr>
<td>5</td>
<td>Do you know that type II diabetes and stroke are also increased risk factors under the vital sign of body mass index [BMI] for overweight and obese athletes?</td>
<td>89</td>
<td>59.3</td>
<td>-14.2</td>
<td>201.64</td>
<td>61</td>
<td>40.7</td>
</tr>
<tr>
<td>6</td>
<td>Do you also know that gallbladder disease and osteoarthritis are increased risk factors under the vital sign of body mass index [BMI] for overweight and obese athletes?</td>
<td>80</td>
<td>53.3</td>
<td>-23.2</td>
<td>538.24</td>
<td>70</td>
<td>46.7</td>
</tr>
</tbody>
</table>

P/Yes Mean Score = 103.2 and SD Score = 18.7
Q/No Mean Score = 46.8 and SD Score = 18.7

|----|---|--------------|------------|----------|----------|------------|-------------|----------|----------|

43
Figure 3. Knowledge about knowing and monitoring vital sign of Body Mass Index [n=150]

Table 8. Dependent t-test (t) analysis of knowing and monitoring vital sign of Body Mass Index [n=150]

<table>
<thead>
<tr>
<th>Variable</th>
<th>Body Mass Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>105</td>
</tr>
<tr>
<td>2</td>
<td>135</td>
</tr>
<tr>
<td>3</td>
<td>92</td>
</tr>
<tr>
<td>4</td>
<td>118</td>
</tr>
<tr>
<td>5</td>
<td>89</td>
</tr>
<tr>
<td>6</td>
<td>80</td>
</tr>
</tbody>
</table>

* [n=6] *[∑D]² = 114244 *df = 5 *∑D = 338 *∑D² = 27436 *t = 3.368 *c = 2.571

Discussion

The survey only examined the knowledge of University Athlete about knowing and monitoring of vital signs of blood pressure [BP], heart rate [HR] and body mass index [BMI] as preventive strategy in reducing early and unsuccessful ageing cased at Njala Campus. With an increasing effort by researchers in a bid of seeking possible and vital solutions in reducing early and unsuccessful ageing in persons, Schriger, D. L. (2007) reported that, blood pressure, heart rate, body temperature and body mass index among others are measures of vital signs, that varies according to a person’s age, weight, gender and overall health taken to help assess the general physical health of a person, give clues to possible diseases, and show progress toward recovery. Statistical instrument used: Percentage [%], Dependent t-test [t], Standard Deviation, Mean, Tabulated Frequency Distribution and Chart were comparatively used in the analysis and testing of the findings at level of significance p<0.05.
In discussing the objective of the survey aimed at University Athletes knowledge about knowing and monitoring of vital signs of Blood Pressure (BP), Heart Rate (HR) and Body Mass Index (BMI) as primary preventive strategy in reducing early and unsuccessful ageing, cased at Njala Campus, the findings were of great significant with positively skewed values for all the variables measured as tabled in 4, 6 and 8, \([t\text{-values of } 4.666, 4.711 \text{ and } 3.368]\) when tested at \(p < 0.05\). Knowing and monitoring of vital sign of blood pressure at home as positively skewed variable in one of the findings, will help maintained blood pressure state of equilibrium among persons (University Athletes) as put forward by Chobanian, A. V. et al (2003) which state that, knowing and monitoring of blood pressure will improve hypertension management and monitor the effects of lifestyle changes and medication related to blood pressure. However, ambulatory monitoring according to Shimbo, D. et al. (2007) is recommended for most patients at home before the start of antihypertensive drugs. In the same vein, Gottdiener, J. S. et al (2002) reported that, shock as a main factor of blood pressure is a complex condition, which leads to critical decreased perfusion leading to the loss of blood volume and pooling of blood within the veins reducing adequate return to the heart and/or low effective heart pumping causing lightheadedness, dizziness, and weakness or fainting. Also, skewed positively in the above finding is the knowing and monitoring of heart rate, which according to Karvonen, J. et al. (1988), is not a stable value and it increases or decreases in response to the body's need in a way to maintain equilibrium (basal metabolic rate) between requirement and delivery of oxygen and nutrients. The normal SAN firing rate is affected by autonomic nervous system activity: sympathetic stimulation increases and parasympathetic stimulation decreases the firing rate. Regarding body mass index, the result was also positively skewed as indicated in the responses of the participants though according to Schneider, H. J. et al. (2010), in their 2010 study that followed 11,000 subjects for up to eight years, BMI is not a good measure for the risk of heart attack, stroke or death due to its simplicity. Nonetheless, looking at the responses tabled in 3, 5 and 7 and figured in 1, 2 and 3 above, the findings indicate a highly positive skewed view of University Athletes knowledge about knowing and monitoring of vital signs of Blood Pressure (BP), Heart Rate (HR) and Body Mass Index (BMI) as primary preventive strategy in reducing early and unsuccessful ageing cased at Njala Campus, as proved in their respective scores of percentages, mean and standard deviation.

Conclusion

In the conclusion summary, the survey only looked at the assessment of University Athletes knowledge about the knowing and monitoring of vital signs of blood pressure [BP], heart rate [HR] and body mass index [BMI], as preventive strategy in reducing early and unsuccessful ageing and recommend as necessary. As embedded in the findings above with special reference to the t-scores, percentage scores, and mean scores, the entire results were skewed positively leaving undeniable justification about University Athletes knowledge in knowing and monitoring of vital signs of Blood Pressure (BP), Heart Rate (HR) and Body Mass Index (BMI) as primary preventive strategy in reducing early and unsuccessful ageing cased at Njala Campus. This according to Muffuli, et al. (2003) is referred to as primary prevention knowledge in reducing progressive early and unsuccessful ageing among athletes favouring active and healthy ageing.

The survey recommends thus; That further research be carried out about other areas of vital signs perhaps with more variables and greater number of participants to help deepened the knowledge of athletes in that direction and for a better generalization of findings. Also, that University Athletes should be more proactive in their frequent home monitoring and evaluation in a way to establish a state of equilibrium regarding vital signs which according to report from, National Early Warning Score Development and Implementation Group (2012), are measurements taken to help assess the general physical health of a person, give clues to possible diseases, and show progress toward
recovery. And that training workshops be made readily available to University Athletes, cased at Njala Campus in the area of knowing and monitoring of vital signs of Blood Pressure (BP), Heart Rate (HR) and Body Mass Index (BMI) as primary preventive strategy in reducing early and unsuccessful ageing.

Acknowledgement
The authors express sincere thanks and appreciation to all staff and students of Njala University, Njala Campus, whose immense co-operation rendered this study to fruition.

References

"Bulimia nervosa fact sheet" (2012). *Office on Women's Health*.

Malcolm, K., Dr. (2015). "Why being 'overweight' means you live longer: The way scientists twist the facts". http://www.independent.co.uk

National Heart Lung and Blood Institute, (2008). "Diseases and conditions index – hypotension".

National Heart, Lung and Blood Institute, (2014). "Assessing Your Weight and Health Risk".

http://www.who.int/mediacentre/factsheets/fs317/en/).
World Health Organization BMI Classification (2006). *Global Database on Body Mass Index*
World Health Organization (1998). List of Basic Terms. *Health Promotion Glossary:* (pp. 4)

Conflict of Interest: None declared